Copied to
clipboard

G = C23.8D8order 128 = 27

1st non-split extension by C23 of D8 acting via D8/C4=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C23.8D8, C24.47D4, C23.4Q16, C23.11SD16, (C22×C8)⋊2C4, (C2×C4).33C42, (C22×C4).18Q8, C4.22(C23⋊C4), C23.38(C4⋊C4), C2.C422C4, (C22×C4).178D4, C22.8(C2.D8), C22.7(C4.Q8), C2.8(C4.9C42), C23.7Q8.1C2, C2.4(C22.4Q16), (C23×C4).190C22, C2.4(C23.9D4), C22.11(D4⋊C4), C23.140(C22⋊C4), C22.14(Q8⋊C4), C22.39(C2.C42), (C2×C4).16(C4⋊C4), (C2×C22⋊C8).3C2, (C22×C4).148(C2×C4), (C2×C4).337(C22⋊C4), SmallGroup(128,21)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C23.8D8
C1C2C22C2×C4C22×C4C23×C4C2×C22⋊C8 — C23.8D8
C1C2C2×C4 — C23.8D8
C1C22C23×C4 — C23.8D8
C1C2C22C23×C4 — C23.8D8

Generators and relations for C23.8D8
 G = < a,b,c,d,e | a2=b2=c2=d8=1, e2=abc, ab=ba, eae-1=ac=ca, ad=da, dbd-1=ebe-1=bc=cb, cd=dc, ce=ec, ede-1=acd-1 >

Subgroups: 280 in 114 conjugacy classes, 42 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C22×C4, C24, C2.C42, C22⋊C8, C2×C22⋊C4, C2×C4⋊C4, C22×C8, C23×C4, C23.7Q8, C2×C22⋊C8, C23.8D8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, D8, SD16, Q16, C2.C42, C23⋊C4, D4⋊C4, Q8⋊C4, C4.Q8, C2.D8, C4.9C42, C22.4Q16, C23.9D4, C23.8D8

Smallest permutation representation of C23.8D8
On 32 points
Generators in S32
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)
(1 23)(2 32)(3 17)(4 26)(5 19)(6 28)(7 21)(8 30)(9 25)(10 18)(11 27)(12 20)(13 29)(14 22)(15 31)(16 24)
(1 15)(2 16)(3 9)(4 10)(5 11)(6 12)(7 13)(8 14)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 21 15 29)(2 6)(3 19 9 27)(5 17 11 25)(7 23 13 31)(12 16)(18 26)(20 32)(22 30)(24 28)

G:=sub<Sym(32)| (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32), (1,23)(2,32)(3,17)(4,26)(5,19)(6,28)(7,21)(8,30)(9,25)(10,18)(11,27)(12,20)(13,29)(14,22)(15,31)(16,24), (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,21,15,29)(2,6)(3,19,9,27)(5,17,11,25)(7,23,13,31)(12,16)(18,26)(20,32)(22,30)(24,28)>;

G:=Group( (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32), (1,23)(2,32)(3,17)(4,26)(5,19)(6,28)(7,21)(8,30)(9,25)(10,18)(11,27)(12,20)(13,29)(14,22)(15,31)(16,24), (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,21,15,29)(2,6)(3,19,9,27)(5,17,11,25)(7,23,13,31)(12,16)(18,26)(20,32)(22,30)(24,28) );

G=PermutationGroup([[(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32)], [(1,23),(2,32),(3,17),(4,26),(5,19),(6,28),(7,21),(8,30),(9,25),(10,18),(11,27),(12,20),(13,29),(14,22),(15,31),(16,24)], [(1,15),(2,16),(3,9),(4,10),(5,11),(6,12),(7,13),(8,14),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,21,15,29),(2,6),(3,19,9,27),(5,17,11,25),(7,23,13,31),(12,16),(18,26),(20,32),(22,30),(24,28)]])

32 conjugacy classes

class 1 2A2B2C2D···2I4A4B4C4D4E4F4G···4N8A···8H
order12222···24444444···48···8
size11112···22222448···84···4

32 irreducible representations

dim1111122222244
type++++-++-+
imageC1C2C2C4C4D4Q8D4D8SD16Q16C23⋊C4C4.9C42
kernelC23.8D8C23.7Q8C2×C22⋊C8C2.C42C22×C8C22×C4C22×C4C24C23C23C23C4C2
# reps1218421124222

Matrix representation of C23.8D8 in GL6(𝔽17)

100000
010000
0013407
0094140
0000134
000094
,
1600000
0160000
00134145
009477
0000413
0000813
,
100000
010000
0016000
0001600
0000160
0000016
,
1160000
1400000
001281316
0011620
00215514
004151611
,
1380000
040000
004131315
0001323
0000116
0000016

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,13,9,0,0,0,0,4,4,0,0,0,0,0,14,13,9,0,0,7,0,4,4],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,13,9,0,0,0,0,4,4,0,0,0,0,14,7,4,8,0,0,5,7,13,13],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[11,14,0,0,0,0,6,0,0,0,0,0,0,0,12,11,2,4,0,0,8,6,15,15,0,0,13,2,5,16,0,0,16,0,14,11],[13,0,0,0,0,0,8,4,0,0,0,0,0,0,4,0,0,0,0,0,13,13,0,0,0,0,13,2,1,0,0,0,15,3,16,16] >;

C23.8D8 in GAP, Magma, Sage, TeX

C_2^3._8D_8
% in TeX

G:=Group("C2^3.8D8");
// GroupNames label

G:=SmallGroup(128,21);
// by ID

G=gap.SmallGroup(128,21);
# by ID

G:=PCGroup([7,-2,2,-2,2,2,-2,2,56,85,120,758,520,1018,3924,242]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=1,e^2=a*b*c,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,d*b*d^-1=e*b*e^-1=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*c*d^-1>;
// generators/relations

׿
×
𝔽