p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23.8D8, C24.47D4, C23.4Q16, C23.11SD16, (C22×C8)⋊2C4, (C2×C4).33C42, (C22×C4).18Q8, C4.22(C23⋊C4), C23.38(C4⋊C4), C2.C42⋊2C4, (C22×C4).178D4, C22.8(C2.D8), C22.7(C4.Q8), C2.8(C4.9C42), C23.7Q8.1C2, C2.4(C22.4Q16), (C23×C4).190C22, C2.4(C23.9D4), C22.11(D4⋊C4), C23.140(C22⋊C4), C22.14(Q8⋊C4), C22.39(C2.C42), (C2×C4).16(C4⋊C4), (C2×C22⋊C8).3C2, (C22×C4).148(C2×C4), (C2×C4).337(C22⋊C4), SmallGroup(128,21)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.8D8
G = < a,b,c,d,e | a2=b2=c2=d8=1, e2=abc, ab=ba, eae-1=ac=ca, ad=da, dbd-1=ebe-1=bc=cb, cd=dc, ce=ec, ede-1=acd-1 >
Subgroups: 280 in 114 conjugacy classes, 42 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C22×C4, C24, C2.C42, C22⋊C8, C2×C22⋊C4, C2×C4⋊C4, C22×C8, C23×C4, C23.7Q8, C2×C22⋊C8, C23.8D8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, D8, SD16, Q16, C2.C42, C23⋊C4, D4⋊C4, Q8⋊C4, C4.Q8, C2.D8, C4.9C42, C22.4Q16, C23.9D4, C23.8D8
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)
(1 23)(2 32)(3 17)(4 26)(5 19)(6 28)(7 21)(8 30)(9 25)(10 18)(11 27)(12 20)(13 29)(14 22)(15 31)(16 24)
(1 15)(2 16)(3 9)(4 10)(5 11)(6 12)(7 13)(8 14)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 21 15 29)(2 6)(3 19 9 27)(5 17 11 25)(7 23 13 31)(12 16)(18 26)(20 32)(22 30)(24 28)
G:=sub<Sym(32)| (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32), (1,23)(2,32)(3,17)(4,26)(5,19)(6,28)(7,21)(8,30)(9,25)(10,18)(11,27)(12,20)(13,29)(14,22)(15,31)(16,24), (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,21,15,29)(2,6)(3,19,9,27)(5,17,11,25)(7,23,13,31)(12,16)(18,26)(20,32)(22,30)(24,28)>;
G:=Group( (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32), (1,23)(2,32)(3,17)(4,26)(5,19)(6,28)(7,21)(8,30)(9,25)(10,18)(11,27)(12,20)(13,29)(14,22)(15,31)(16,24), (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,21,15,29)(2,6)(3,19,9,27)(5,17,11,25)(7,23,13,31)(12,16)(18,26)(20,32)(22,30)(24,28) );
G=PermutationGroup([[(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32)], [(1,23),(2,32),(3,17),(4,26),(5,19),(6,28),(7,21),(8,30),(9,25),(10,18),(11,27),(12,20),(13,29),(14,22),(15,31),(16,24)], [(1,15),(2,16),(3,9),(4,10),(5,11),(6,12),(7,13),(8,14),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,21,15,29),(2,6),(3,19,9,27),(5,17,11,25),(7,23,13,31),(12,16),(18,26),(20,32),(22,30),(24,28)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4N | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | - | + | + | - | + | ||||
image | C1 | C2 | C2 | C4 | C4 | D4 | Q8 | D4 | D8 | SD16 | Q16 | C23⋊C4 | C4.9C42 |
kernel | C23.8D8 | C23.7Q8 | C2×C22⋊C8 | C2.C42 | C22×C8 | C22×C4 | C22×C4 | C24 | C23 | C23 | C23 | C4 | C2 |
# reps | 1 | 2 | 1 | 8 | 4 | 2 | 1 | 1 | 2 | 4 | 2 | 2 | 2 |
Matrix representation of C23.8D8 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 4 | 0 | 7 |
0 | 0 | 9 | 4 | 14 | 0 |
0 | 0 | 0 | 0 | 13 | 4 |
0 | 0 | 0 | 0 | 9 | 4 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 4 | 14 | 5 |
0 | 0 | 9 | 4 | 7 | 7 |
0 | 0 | 0 | 0 | 4 | 13 |
0 | 0 | 0 | 0 | 8 | 13 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
11 | 6 | 0 | 0 | 0 | 0 |
14 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 8 | 13 | 16 |
0 | 0 | 11 | 6 | 2 | 0 |
0 | 0 | 2 | 15 | 5 | 14 |
0 | 0 | 4 | 15 | 16 | 11 |
13 | 8 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 13 | 13 | 15 |
0 | 0 | 0 | 13 | 2 | 3 |
0 | 0 | 0 | 0 | 1 | 16 |
0 | 0 | 0 | 0 | 0 | 16 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,13,9,0,0,0,0,4,4,0,0,0,0,0,14,13,9,0,0,7,0,4,4],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,13,9,0,0,0,0,4,4,0,0,0,0,14,7,4,8,0,0,5,7,13,13],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[11,14,0,0,0,0,6,0,0,0,0,0,0,0,12,11,2,4,0,0,8,6,15,15,0,0,13,2,5,16,0,0,16,0,14,11],[13,0,0,0,0,0,8,4,0,0,0,0,0,0,4,0,0,0,0,0,13,13,0,0,0,0,13,2,1,0,0,0,15,3,16,16] >;
C23.8D8 in GAP, Magma, Sage, TeX
C_2^3._8D_8
% in TeX
G:=Group("C2^3.8D8");
// GroupNames label
G:=SmallGroup(128,21);
// by ID
G=gap.SmallGroup(128,21);
# by ID
G:=PCGroup([7,-2,2,-2,2,2,-2,2,56,85,120,758,520,1018,3924,242]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=1,e^2=a*b*c,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,d*b*d^-1=e*b*e^-1=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*c*d^-1>;
// generators/relations